

Computer Forensics Tool Testing— The Volatility Framework: WK8

Course Name: CYB624

Professor: Cynthia Gonnella

Date: 03/13/2020

Examiner Name: Brian T. Carr

Page 2 of 17

Table of Contents

List of Illustrative Materials ..3

List of Tables ..3

List of Figures ...3

File Samples ..4

Project Scope ..5
Methodology ...5

Analysis ..6
Discussion ... 14

Conclusion and Future Research Recommendations .. 14
References .. 16

Appendix .. 17

Appendix A: Examiner Workstation Specifications ... 17

Page 3 of 17

List of Illustrative Materials

List of Tables

Table 1: Case evidence items ..4
Table 2: Hash Comparison Table .. 13

List of Figures

Figure 1: Hash values of the memory images ..6

Figure 2: Imageinfo results for memory.img..7
Figure 3: Imageinfo results for memory2.img ..7

Figure 4: Imageinfo results for memory4.img ..8
Figure 5: Pslist output for memory.img ...9

Figure 6: Creation and comparison of validation output files related to

349f6a9bc1efbdc9ca024be701823604 ...9

Figure 7: Pslist output for memory2.img ... 10
Figure 8: Creation and comparison of validation output files related to

f5a328a3d4bdba93a4116c3c57589fa1 ... 10
Figure 9: Pslist output for memory4.img ... 11

Figure 10: Creation and comparison of validation output files related to

ca713e8ba0d5e1b1387c6389cedab5bctt .. 11

Figure 11: MD5 hash values of all output files for comparison .. 12

Page 4 of 17

File Samples

Table 1 outlines the file samples used to test the pslist functionality of The Volatility Framework.

Table 1: Case evidence items

Description Designation Filename MD5 Hash

Memory

Image File

File Sample memory.img 349f6a9bc1efbdc9ca024be701823604

Memory

Image File

File Sample WC_memory.img 349f6a9bc1efbdc9ca024be701823604

Memory

Image File

File Sample PRES_memory.img 349f6a9bc1efbdc9ca024be701823604

Memory

Image File

File Sample memory2.img f5a328a3d4bdba93a4116c3c57589fa1

Memory

Image File

File Sample WC_memory2.img f5a328a3d4bdba93a4116c3c57589fa1

Memory

Image File

File Sample PRES_memory2.img f5a328a3d4bdba93a4116c3c57589fa1

Memory

Image File

File Sample memory4.img ca713e8ba0d5e1b1387c6389cedab5bc

Memory

Image File

File Sample WC_memory4.img ca713e8ba0d5e1b1387c6389cedab5bc

Memory

Image File

File Sample PRES_memory4.img ca713e8ba0d5e1b1387c6389cedab5bc

Page 5 of 17

Project Scope

 The scope of the project will be limited to the pslist plugin functionality of The Volatility

Framework (VF). The validation exercise will be completed using the Volatility Foundation

Volatility Framework 2.6. This tool was utilized from the command line of an Ubuntu Linux

Virtual Machine (VM). The Analyst tested the consistency of the output of the pslist plugin by

outputting the results to a text file and then by hashing the text file. By comparing the hashes of

different output text files, the Analyst was able to determine if VF produced consistent output

when provided with input files with consistent hash values and identical command syntax.

Additionally, the Analyst was able to determine that when provided with input files with

different hash values and identical command syntax, VF would produce inconsistent output.

Finally, The Analyst was able to determine if VF was able to successfully process all nine of the

memory image files.

Methodology

 The Analyst chose to utilize the National Institute for Standards and Technology’s

(NIST) Computer Forensic Tool Testing (CFTT) methodology. This methodology has two parts.

The first part is the selection development process, and the second portion is the tool test process.

(National Institute for Standards and Technology, 2018) The development processes consisted of

the Analyst selecting the VF as the tool which to use for the project and the pslist plugin as the

functionality of that tool which was to be tested.

 The tool test process began with the Analyst installing VF within an Ubuntu Linux virtual

machine which was used for tool testing validation. The Analyst was able to install VF by

utilizing the APT package manager. The Analyst utilized the installation command: sudo apt

install volatility. The Analyst then reviewed the documentation before developing a plan to test

Page 6 of 17

the pslist function of VF. The Analyst then carried out the CFTT plan and documented the

results. Finally, the Analyst submitted the analysis results.

Analysis

 The analysis began by first obtaining the hash values of each memory image that was to

be processed by the pslist plugin of VF. The Analyst obtained each of the nine files’ MD5 hash

value by using the md5sum utility and then by sorting the output. There are three unique hash

values among the nine files. Each hash value can be associated with three unique files. This

information can be seen as outlined in Figure 1.

Figure 1: Hash values of the memory images

 Next, the Analyst used the imageinfo plugin of VF to obtain the proper profile

information for one file for each unique hash value. The Imageinfo results for the memory.img

memory image revealed that there were a few suggested profiles. The suggested profiles for

memory.img can be seen outlined in Figure 2. The Analyst then used the imageinfo plugin again,

but this time on memory2.img. This time, VF only suggested two different profiles. The

imageinfo results for memory2.img can be seen in Figure 3. The two suggested profiles for

memory2.img can also be seen outlined in Figure 3. The Analyst then repeated this process of

using the imageinfo VF plugin to obtain the suggested profiles for the memory4.img memory

Page 7 of 17

capture. The suggested profiles for the memory4.img memory capture can be seen outlined in

Figure 4.

Figure 2: Imageinfo results for memory.img

Figure 3: Imageinfo results for memory2.img

Page 8 of 17

Figure 4: Imageinfo results for memory4.img

After the suggested profiles for each memory image were obtained, the Analyst

proceeded to use them to analyze their associated memory image files. The output of the pslist

plugin for memory.img can be seen in Figure 5. The syntax used to obtain this output can be

seen outlined in Figure 5. The Analyst then proceeded to repeat this process, except this time the

output was sent to a txt file. The Analyst repeated this for all the input files with an MD5 hash

value of 349f6a9bc1efbdc9ca024be701823604. The Analyst then compared the hash values of

each output file to determine if the pslist plugin of the VF produced consistent output results

when provided with input files with consistent hash values. The Analyst can be seen creating and

comparing the output files in Figure 6. Additionally, the results highlighted in Figure 6 show

that the output files all produced the same MD5 hash value. This confirms that when provided

with multiple input files with the same hash value, the pslist plugin of VF will produce consistent

output results.

Page 9 of 17

Figure 5: Pslist output for memory.img

Figure 6: Creation and comparison of validation output files related to 349f6a9bc1efbdc9ca024be701823604

 The Analyst then repeated this process for the input files associated with the MD5 hash

value, f5a328a3d4bdba93a4116c3c57589fa1. The output of the pslist plugin can be seen in

Figure 7. The Analyst can then be seen outputting the results of the pslist plugin to text files in

Figure 8. The hash values of the output files can be seen outlined in Figure 8. These results show

that the output files all had the same hash value, showing that the pslist plugin was able to

produce consistent results when provided with consistent input files.

Page 10 of 17

Figure 7: Pslist output for memory2.img

Figure 8: Creation and comparison of validation output files related to f5a328a3d4bdba93a4116c3c57589fa1

 The Analyst repeated this process for the third time to validate the pslist output for the

input files related to ca713e8ba0d5e1b1387c6389cedab5bc MD5 hash value. The VF pslist

plugin output for memory4.img can be seen in Figure 9. The Analyst then proceeded to output

the results of the pslist VF plugin to text files, this can be seen in Figure 10. The Analyst then

obtained the MD5 hash value of each output file in order to determine if they were consistent.

The hash values of each output file associated with ca713e8ba0d5e1b1387c6389cedab5bc can be

Page 11 of 17

seen in Figure 10. The hash values in Figure 10 were all consistent, which validated that the

output was consistent for input files with consistent hash values.

Figure 9: Pslist output for memory4.img

Figure 10: Creation and comparison of validation output files related to ca713e8ba0d5e1b1387c6389cedab5bctt

 The Analyst compared the hash values of all the output files in order to determine if the

output would vary if the hash value of the input file varied. The hash values of the output files in

Figure 11, show that there are three different hash values among the output files. Additionally,

each hash value is associated with three of the output files. The associated output files hash

grouping corresponded with the associated input files hash grouping. Since the hash values

varied across the output files, the determination was able to be made that when provided with

Page 12 of 17

input files that varied in hash value, the output would vary. Additionally, the pslist plugin of VF

successfully processed each of the nine memory image capture files.

Figure 11: MD5 hash values of all output files for comparison

Page 13 of 17

 The items in Table2 show the relationships between the input and output files of the

computer forensics tool testing project.

Table 2: Hash Comparison Table

Input File Name Input File Hash

Value

Output

File Name

Output File Hash

Value

Profile

Used

memory.img 349f6a9bc1efbdc9ca0

24be701823604

memory_o

utput1.txt

39c1228cfc359fe19d

33fabadb12247b

Win7SP1

x64

WC_memory.img 349f6a9bc1efbdc9ca0

24be701823604

memory_o

utput2.txt

39c1228cfc359fe19d

33fabadb12247b

Win7SP1

x64

PRES_memory.img 349f6a9bc1efbdc9ca0

24be701823604

memory_o

utput3.txt

39c1228cfc359fe19d

33fabadb12247b

Win7SP1

x64

memory2.img f5a328a3d4bdba93a4

116c3c57589fa1

memory2_

output1.txt

96db1918f0104262b

34ca36494924ead

WinXPS

P2x86

WC_memory2.img f5a328a3d4bdba93a4

116c3c57589fa1

memory2_

ouput2.txt

96db1918f0104262b

34ca36494924ead

WinXPS

P2x86

PRES_memory2.img f5a328a3d4bdba93a4

116c3c57589fa1

memory2_

output3.txt

96db1918f0104262b

34ca36494924ead

WinXPS

P2x86

memory4.img ca713e8ba0d5e1b138

7c6389cedab5bc

memory4_

output1.txt

4901984294b99539

7e1e1cef79f60e41

Win7SP1

x64

WC_memory4.img ca713e8ba0d5e1b138

7c6389cedab5bc

memory4_

output2.txt

4901984294b99539

7e1e1cef79f60e41

Win7SP1

x64

PRES_memory4.img ca713e8ba0d5e1b138

7c6389cedab5bc

memory4_

output3.txt

4901984294b99539

7e1e1cef79f60e41

Win7SP1

x64

Page 14 of 17

Discussion

 VF is an extremely useful tool for performing analysis of volatile memory data. VF is a

cross-platform, modular, memory analysis tool. In recent years memory forensics has become

increasingly important, and many analysts and examiners are finding that the VF is a necessary

tool to use. (The Volatility Foundation, 2018)

 Memory forensic has become important for several reasons. One of those is that many of

the new variants of malware infect the host system in a fileless manor. These fileless variants of

malware are becoming increasingly common. The security firm TrendMicro reported that they

had witnessed a 396% increase in fileless malware threats which they encountered from January

of 2018 to June of 2019. (TrendMicro, 2019)

Another reason is that volatile data may provide insight with non-volatile storage data

cannot. “Critical data often exists exclusively in memory, such as disk encryption keys, memory-

resident injected code fragments, off-the-record chat messages, unencrypted e-mail messages,

and non-cacheable Internet history records” (Ligh, Case, Levy, & Walters, 2014) Volatile data is

separate from the non-volatile storage data. Additionally, those two locations store different

types of data. Analyzing any memory captures along with the non-volatile storage media of a

system, will help to ensure that an examiner is not overlooking anything.

Conclusion and Future Research Recommendations

The pslist plugin of VF was able to successfully process nine memory image capture

files. Additionally, VF was able to demonstrate consistency and integrity when the images were

processed the by pslist plugin. It was determined through hash value comparison that when the

pslist plugin of VF was provided with two input files that had the same MD5 hash value, the

output would be consistent. Additionally, the test showed that when provided with two input files

Page 15 of 17

with different MD5 hash values, the output would additionally be different for each use of the

pslist plugin.

The Analyst recommends testing additional functionalities of VF. The Analyst

additionally recommends testing additional tools used for memory analysis. Memory forensics

has become more important as some threats have moved to live exclusively in volatile data.

In order to use these tools to help defeat cybercriminals, validating data for integrity is an

essential function of any digital forensic professionally as any evidence or findings should be

ready to be prepared in a court of law. (Nelson, Phillips, & Steuart, 2016) It is necessary to

validate additional functionalities of VF in order to ensure that the integrity of those functions

output will also stand up to scrutiny.

Page 16 of 17

References

Ligh, M. H., Case, A., Levy, J., & Walters, A. (2014). The Art of Memory Forensics Detecting

Malware and Threats in Windows, Linux, and Mac, Memory. Indianapolis: Wiley.

National Institute for Standards and Technology. (2018, Feb 22). Methodology Overview.

Retrieved from nist.gov: https://www.nist.gov/itl/ssd/software-quality-group/computer-

forensics-tool-testing-program-cftt/cftt-general-0

Nelson, B., Phillips, A., & Steuart, C. (2016). Guide To Computer Forensics And Investigations.

Boston: Cengage Learning.

The Volatility Foundation. (2018). About The Volatility Foundation. Retrieved from

volatilityfoundation.org: https://www.volatilityfoundation.org/about

TrendMicro. (2019, July 29). Risks Under The Radar Understanding Fileless Threats. Retrieved

from trendmicro.com: https://www.trendmicro.com/vinfo/ph/security/news/security-

technology/risks-under-the-radar-understanding-fileless-threats

Page 17 of 17

Appendix

Appendix A: Examiner Workstation Specifications

• Computer Name: BrianCarrrGS75

• Operating System (OS) Name: Windows 10 Home

• OS Version: 1809

• System Make/Model: MSI GS75 Stealth

• System Serial Number: K1910N0052372

• Time Zone of Examiner Machine: Eastern Standard Time (-5:00 GMT)

• System date/time is consistent with the time zone listed above, as verified by

http://nist.time.gov/.

